In [1]:
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
In [2]:
x = tf.placeholder(tf.float32)
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(
- tf.reduce_sum(
y_ * tf.log(y),
reduction_indices = [1]
)
)
train_step = tf.train\
.GradientDescentOptimizer(0.5)\
.minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
In [12]:
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
In [13]:
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
In [14]:
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
What are the digits that this Softmax Regression model can't recorgnize?
In [ ]: